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SUMMARY

This paper considers numerical simulation of time-dependent non-linear partial differential equation
resulting from a single non-linear conservation law in h, p,k mathematical and computational framework
in which k=(k1,k2) are the orders of the approximation spaces in space and time yielding global
differentiability of orders (k1−1) and (k2−1) in space and time (hence k-version of finite element method)
using space–time marching process. Time-dependent viscous Burgers equation is used as a specific model
problem that has physical mechanism for viscous dissipation and its theoretical solutions are analytic. The
inviscid form, on the other hand, assumes zero viscosity and as a consequence its solutions are non-analytic
as well as non-unique (Russ. Math. Surv. 1962; 17(3):145–146; Russ. Math. Surv. 1960; 15(6):53–111).
In references (Russ. Math. Surv. 1962; 17(3):145–146; Russ. Math. Surv. 1960; 15(6):53–111) authors
demonstrated that the solutions of inviscid Burgers equations can only be approached within a limiting
process in which viscosity approaches zero. Many approaches based on artificial viscosity have been
published to accomplish this including more recent work on H(Div) least-squares approach (Commun.
Pure Appl. Math. 1965; 18:697–715) in which artificial viscosity is a function of spatial discretization,
which diminishes with progressively refined discretizations. The thrust of the present work is to point out
that: (1) viscous form of the Burgers equation already has the essential mechanism of viscosity (which
is physical), (2) with progressively increasing Reynolds (Re) number (thereby progressively reduced
viscosity) the solutions approach that of the inviscid form, (3) it is possible to compute numerical solutions
for any Re number (finite) within hpk framework and space–time least-squares processes, (4) the space–
time residual functional converges monotonically and that it is possible to achieve the desired accuracy,
(5) space–time, time marching processes utilizing a single space–time strip are computationally efficient.
It is shown that viscous form of the Burgers equation without linearizing provides a physical and viable
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mechanism for approaching the solutions of inviscid form with progressively increasing Re. Numerical
studies are presented and the computed solutions are compared with published work. Copyright q 2008
John Wiley & Sons, Ltd.
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1. INTRODUCTION

1.1. Literature review

In this section we present a review of published work on the numerical computations of the solutions
of linear and non-linear hyperbolic and parabolic differential and partial differential equations. The
idea of generalized solutions of the differential and partial differential equations was first proposed
by S. L. Sobolev and constitutes the mathematics and thus the backbone of the finite element
method in conjunction with variational methods. In an important paper Godunov [1] discussed the
problem of generalized solutions of quasi-linear equations in gas dynamics. The author illustrated
that for ��/�t+���/�x=0 (inviscid Burgers equation), the theory of generalized solutions leads
to non-uniqueness. This situation can be corrected by imposing additional restriction on the weak
form. For the Burgers equation (and its generalization to quasi-linear systems), this restriction
leads to the law of conservation of entropy. Thus, in gas dynamics equations describing reversible
processes, the law of conservation of entropy must hold in the theory of generalized solutions,
whereas in irreversible processes there must be entropy production which in physical systems
under adiabatic conditions is only possible through dissipative mechanisms. In other words, in
the theory of generalized solutions of gas dynamics equations, the law of increase in entropy
must be replaced by the law of dissipation of energy to ensure the uniqueness of generalized
solutions. A rigorous mathematical exposition of the solutions of quasi-linear hyperbolic equations
is presented by Rozhdestvenskii [2]. The findings are similar to those reported by Godunov and
are summarized in Reference [3]. The author shows that systems of linear equations are always
conservative, while the systems of non-linear equations, generally speaking, are conservative only
for n�2 (two conservation laws).

Solution of non-linear hyperbolic systems has also been reported by Grimm [4] and Smoller
[5, 6]. Grimm proposed an existence theorem and provided its proof. Smoller reported general
characteristics of these solutions with specific details and discussion of the Riemann problem
and contact discontinuities. Hopf [7] presented a mathematical proof of the convergence of weak
solutions of quasi-linear equations of first order with artificial viscosity to strong solutions as
viscosity approaches zero. Friedrichs and Lax [8] discussed first-order conservative systems of non-
linear conservation laws which have as a consequence an additional conservation law. They show
that if the additional conserved quantity is a convex function of the original ones, the original system
can be put into symmetric hyperbolic form. They also derive an entropy inequality, which has also
been suggested by Kruzhkov [9] for discontinuous solutions of the given system of conservation
laws. Existence of discrete shocks, genuine non-linearity and the use of fourth-order dissipation in a
single conservation law have been reported by Mock [10, 11]. A thorough mathematical exposition
with theorems and proofs for uniqueness of the solutions of hyperbolic conservation laws has been
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reported by Diperna [12]. Existence and uniqueness of entropy solutions to the Riemann problem
for hyperbolic systems of two conservation laws has been reported by Keyfitz and Kranzer [13].
The paper presents proofs of existence and uniqueness of the solutions in one space variable.
Only strictly hyperbolic and genuinely non-linear systems are investigated. Noh [14] reported an
investigation of the errors introduced in the calculation of strong shocks using artificial viscosity
of the type in Reference [15] and artificial heat flux. An investigation of the errors introduced in
the interaction of strong shocks due to the assumption of finite shock width has been reported by
Menikoff [16].

There are many published works addressing numerical simulation of partial differential equa-
tions resulting from non-linear hyperbolic conservation laws. Here, we primarily consider finite
element approaches. Comprehensive literature review of published finite element approaches for
convection–diffusion and Burgers equation can be found in References [17, 18]. As pointed out
in Reference [2], for linear and non-linear hyperbolic systems based on one or two conservation
laws it is possible to show the convergence of generalized solutions to strong solutions.

The 1-D form of the time-dependent momentum equation yields 1-D time-dependent viscous
form of the Burgers equation, which when non-dimensionalized contains the dimensionless param-
eter, Reynolds (Re) number. The viscosity of the medium is reflected in Re. For the viscous form
of the Burgers equation, the solutions are analytic with finite shock width dependent on the Re
number. For higher Re, the shock width is approximately O(1/Re) and hence remains finite for a
finite value of Re. The shock structure resolution in this case requires prudent mesh refinements
in the shock zone to accommodate the localized high gradients of the solution for high Re. The
analytic solutions of the viscous form of the Burgers equation can be expressed in terms of infinite
series expansion in space and time. Obviously, the best way to simulate such a solution is to use a
single space–time element with p-levels in space and time approaching infinity, which of course
is not possible. Thus, if we limit p-levels in space and time, then obviously discretization of the
domain in space and time is necessary. For the converged numerical solutions to approach theoret-
ical solutions (up to certain order derivatives), higher-order global differentiability (smoothness)
of local approximation in space and time is desirable. Hence, h, p,k mathematical framework may
be beneficial for numerical simulation of such processes.

Inviscid form of the Burgers equation is a special case of the viscous form in which Re=∞
(zero viscosity). In this case, shock width O(1/Re) becomes zero and we have a prefect shock,
i.e. jump with non-unique values of the solution at the shock. Such solutions are non-analytic and
singular at the shock and therefore the solution derivatives are not defined at the shock. These
solutions cannot be simulated in this precise form using finite element processes employing local
approximations of class C0. As pointed out in Reference [1] an attempt to compute solutions of
inviscid Burgers equation would lead to non-uniqueness of the solution and hence obviously the
lack of convergence of the associated functionals (for example, residual functional in least-squares
processes). The solutions of the inviscid Burgers equations can only be approached as a limiting
case. For example:

(i) Artificial viscosity approach [1] in which case one shows that as the artificial viscosity
approaches zero the solutions of the inviscid form can be visualized (but not possible to
compute).

(ii) More recently, H(Div) least-squares processes have been used in which the inviscid Burgers
equation is recast as a first-order system of coupled partial differential equations using
auxiliary variables [3, 19, 20]. The authors recognize the non-uniqueness of the solution and
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lack of existence of unique first derivative at the shock and introduce the Frêchet derivative
to restore analyticity of the solution. Many theorems related to the convergence of the least-
squares functional, uniqueness of the solution of the reconstructed initial value problem
(IVP) and convergence of its weak solutions are presented. Some significant points are
worth noting: (a) As pointed out by Godunov [1], the solutions of inviscid Burgers equations
are non-unique and the uniqueness can only be restored by introducing some mechanism
of viscosity (artificial or physical). (b) In the H(Div) approach, mesh-dependent artificial
viscosity is introduced in the inviscid form of the Burgers equation such that progressively
refined meshes in the spatial direction yield progressively decreasing viscous dissipation
mechanism and hence it is possible to argue that in the limit the discretization length
in space approaches zero, the solutions of the inviscid Burgers equations are possible to
approach (but never possible to compute directly). (c) From (b) it is clear that in References
[3, 19, 20] the authors only solve the viscous form of the Burgers equation in which the
mechanism of viscous dissipation is artificial (non-physical) and not the inviscid form.
(d) The viscous form of the Burgers equation resulting form the non-linear conservation
law already has a physical mechanism of viscous dissipation which in the dimensionless
form of the GDE is intrinsic in the Re number. (e) In view of (a)–(d) it is quite clear
that here we have two possible propositions. Should the solutions of the inviscid Burgers
equation be approached using the artificial viscosity approach (let it be H(Div) or any
other) or should these be approached using viscous form of the GDE with progressively
increasing Re thereby progressively diminishing viscosity. First, we argue that the viscous
form of the Burgers equation has a physical mechanism of viscosity and its solutions
are always unique and that the computations using this form require no other artificial
means. Secondly, we must show that the computations for the viscous form are possible
with monotonic convergence of the least-squares functional, accurate resolutions of the
shock structure (depending upon Re) for discretizations that are no more refined than
those employed in the artificial viscosity approaches (hence computationally competitive).
For a given Re, the computed evolution is always time accurate and as Re is increased
progressively the computed solutions indeed approach those of the inviscid form. (f) In
Reference [3] the solutions reported using H(Div) approach for 16×16,32×32,64×64
and 256×256 space–time meshes show that these solutions correspond to progressively
increasing Re; however, from this approach Re corresponding to these solutions cannot be
quantified.

We remark that if we are to diffuse the solutions in some form or the other, then, we may as well
use the viscous form of the Burgers equation in which the diffusion is physical due to viscosity
of the medium and is reflected in the Re number. In this approach if one could show that:

(a) The solutions remain unique and convergent for any finite Re number.
(b) The associated least-squares functional shows monotonic convergence and indeed

approaches zero.
(c) For progressively increasing Re the progressively reduced shock width (O(1/Re)) for high

Re is achieved and that the computations are always time accurate then, we indeed have
a computational strategy in which the solutions of the inviscid Burgers equation can be
visualized as a limiting case when Re approaches infinity. This approach is much more
appealing because of the fact that viscous form of the Burgers equation is in agreement
with the physics, and, that it requires no other treatments to regularize singular solutions as
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in case of the inviscid Burgers equation, as they are naturally analytic due to the physics of
the viscous medium. We address these issues in the paper.

1.2. Global smoothness or differentiability of approximations

Just like in boundary value problem (BVP), in IVPs also, continuity, differentiability and order
of global differentiability of the dependent variables in space and time are dependent on physics.
When the theoretical solutions of the IVP are analytic, the derivatives of the dependent variables
of up to orders ‘ j’=( j1, j2) in space and time are continuous, differentiable and bounded, where
j1, j2 approaching infinity are admissible. When one approximates numerical solutions of the IVP,
the global smoothness of the approximations up to any desired order in space and time in the
point-wise sense is necessary if the approximations are to approach theoretical solutions in terms
of continuity and global differentiability up to a desired order.

The issue and importance of global smoothness of computed solutions in finite element processes
is not new. In the classical paper, Strang [21] points out the intrinsic weakness of C0 basis functions
(non-conforming elements) for BVP where they produce jump in the first derivative normal to
the inter-element boundaries, and hence, provide a measure of deviation of the computed solution
from C1 behavior. In another classic paper [22], Irons suggested that if such elements pass the
‘patch test’, then the weak convergence of the class C0 to C1 is assured. Subsequently, Strang [21]
showed mathematically that this indeed is the case. Strang [21] points out that in the numerical
approximations for BVP with inter-element discontinuity of the first derivative, the strain energy
becomes unbounded and thus such basis functions are not admissible in the true mathematical
sense. However, based on the theory of distribution and the concept of generalized derivative, the
strain energy remains finite when the integrals are in Lebesgue sense. It is clear that, even though
C0 basis functions may yield weak convergence to class C1 using h, p,hp adaptive processes,
this issue of weak convergence or lack of it can be completely avoided by employing the basis
functions of class C1 or higher (if needed) in the integral forms to begin with.

Discussions of global smoothness for BVP can also be found in References [23, 24] among
many others. To some extent, global smoothness has been recognized as an important aspect in
all numerical computations; however, very little has been done to design computational processes
in which higher order of global smoothness is intrinsically incorporated in the computational
processes. The majority of published work, using Galerkin, mixed Galerkin, least squares, space–
time least-squares processes (STLSP) among many other computational techniques, is strictly
based on C0 local approximations in space as well as time with perhaps only a few exceptions.
Hermit basis functions and Hermite finite elements based on these functions have been used in solid
mechanics and other areas. A comprehensive literature review of these can be found in [25]. Katz
and Wang [26], Wang et al. [27] and Wang [28] have presented p-version of finite element method
with C1 basis functions for a triangular element to solve a bi-harmonic equation. Other references
to C1 continuity across inter-sub domain boundaries may be found in References [29–33].

More recently, while solving gas dynamics equations numerically using space–time least-squares
finite element method with p-version C00 basis functions in space and time, Surana and Van
Dyne [34–36] and Nayak [37] noted the presence of discontinuities in the first normal derivatives
of dependent variables at the inter-element boundaries, which are always present in the weakly
converged solutions. These discontinuities generate solution perturbations that amplify as one
marches in time (time evolution) and eventually leads to the failure of the computational processes.
This problem was eliminated by using C11 basis functions in space and time, thereby enforcing

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2008; 57:1545–1568
DOI: 10.1002/fld



1550 K. S. SURANA ET AL.

continuity of the first normal derivatives of dependent variables at the inter-sub domain boundaries
in the strong sense. The necessity and merits of using C11 basis functions in 2-D incompressible
flows of Newtonian and polymer flows have been reported by Nayak [37]. Surana and Bona
reported solutions of class C1 and C11 [38] for stationary and transient 1-D convection–diffusion
and Burgers equations. Tremendous success of C1 and C11 basis functions in BVP and IVP
provided the motivation for generalization of these concepts, which eventually led to the research
work presented by Surana et al. [39–42] in which the authors have presented development of a new
mathematical and computational framework for BVP based on h, p,k as parameters influencing
all finite element computations and variational consistency of the integral forms. In a more recent
paper Surana et al. [42] have presented k-version of finite element method for IVP based on h, p,k
mathematical framework and space–time variational consistency (STVC) of the space–time integral
forms. The space–time decoupled methods were not considered for obvious reasons and space–
time coupled processes are advocated to be the preferred approach. The authors show space–time,
time marching process to be meritorious and superior to space–time meshes in all aspects. The
authors classify all space–time differential operators over a space–time strip into two categories:
non-self adjoint and non-linear, and show space–time Galerkin method and Galerkin method weak
form to be space–time variationally inconsistent whereas STLSP are space–time variationally
consistent and hence meritorious in all aspects.The importance of variational consistency for BVP
and STVC for IVP stems from the fact that such integral forms yield computational processes that
are unconditionally non-degenerate and for IVP the issues related to Courant–Friedrichs–Lewy
(CFL) number and stability are completely eliminated.

1.3. Scope of the present work

The theoretical solutions of the viscous form of the time-dependent Burgers equation are of higher-
order global differentiability in space and time. It is shown that in h, p,k mathematical framework,
the solutions of the inviscid Burgers equation are approached with progressively increasing Re
number and order k=(k1,k2); k1 and k2 being the orders of the approximation space in space
and time. Minimally conforming spaces in space and time are established and the need for spaces
of orders higher than minimally conforming is clearly demonstrated. Details are presented to
establish uniqueness of the numerical solutions from the STLSP in h, p,k framework when using
second-order GDEs (as opposed to a system of two first-order GDEs) and Newton’s linear method
with line search for solving the resulting system of non-linear algebraic equations. In the STLSP
non-linear GDEs are utilized without linearization or any other assumptions that the least-squares
functional and its first variation correspond to the actual non-linear GDEs. Numerical studies are
presented to demonstrate all mathematical and computational features of the proposed framework
and the numerical results are compared with the published work.

2. TRANSIENT 1-D BURGERS EQUATION

2.1. Mathematical and computational framework

The details of h, p,k mathematical and computational framework for IVP and the importance of
space–time variationally consistent integral forms have been presented by Surana et al. [42]. The
concepts pertinent in context with the present work are described briefly in the following.
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Let A�− f =0 in �xt =�x ×�t =�x ×(0,�) be an abstract IVP in which A is a space–time
differential operator. Then, all space–time differential operators A can be classified mathematically
over �̄xt or n�̄xt (�̄xt =⋃

n
n�̄xt ), an nth space–time strip into two categories: non-self adjoint or

non-linear. Using this classification STVC and space–time variational inconsistency (STVIC) of the
space–time methods of approximation such as space–time Galerkin method, Galerkin method/weak
form, Petrov–Galerkin method, weighted residual method and least-squares processes can be
established (see Reference [42] for the definition of STVC, STVIC and other details) over a
space–time strip or the entire space–time domain. STVC space–time integral form yields an
unconditionally stable and non-degenerate computational process regardless of the choices of h, p
and k and the dimensionless parameters in the description of the IVP during the entire evolution.
On the other hand, STVIC space–time integral forms do not ensure unconditionally stable and
non-degenerate computational processes for all choices of h, p,k. Authors in Reference [42]
have shown that all other space–time methods of approximation except space–time least-squares
processes (STLSP) are STVIC for both classes of space–time differential operators. STLSP yield
STVC space–time integral forms for both classes of differential operators and hence are worthy of
consideration as a general computational methodology for all IVP, and hence will be considered
in the present work.

Space–time integral forms for a space–time strip with time marching are meritorious in terms
of computational efficiency and error control due to the fact that evolution is time marched only
when converged solution is achieved for the existing space–time strip or slab and hence, will be
considered in this work.

The concept of global differentiability of approximation �h , k-version of finite element method
and k,hk, pk,hpk processes were introduced by Surana et al. [39–41] for self-adjoint, non-self-
adjoint and non-linear differential operators in BVP. These concepts were further extended for IVP
in Reference [42].

Let the space–time differential operator A in A�− f =0 in �xt contain derivatives of up to

orders 2m1 in space and up to orders 2m2 in time. Let �̄
T
xt =

⋃n∗
n=1(

⋃M
e=1

n�̄
e
xt ) be a discretization

of space–time domain �̄xt in which n∗ is the number of space–time strips, M is the number of
space–time elements in a space–time strip and n�̄

e
xt is the space–time element ‘e’ for the nth

space–time strip. Let �h(x, t) be an approximation of � in �̄
T
xt and let n�e

h be an approximation
of �(x, t) in n�̄

e
xt ; then, we have,

�h(x, t)=
n∗⋃
n=1

(
M⋃
e=1

n�e
h(x, t)

)
(1)

and the following holds:

(a) If A�h(x, t)− f =E ∀x, t ∈ �̄
T
xt , then �h ∈Hk(�̄

T
xt ), k=(k1,k2), k1�2m1+1, k2�2m2+1

in which k1 and k2 are orders of the scalar product space in space and time and E is the
residual. k1=2m1+1 and k2=2m2+1 correspond to minimally conforming scalar product
space if the space–time integrals in the finite element processes are to be in Riemann sense.

(b) Equation (1) and (a) imply that n�e
h ∈Hk,p(n�̄

e
xt ); k=(k1,k2), k1�2m1+1, k2�2m2+1

and p1�2k1−1, p2�2k2−1. p1 and p2 being the degrees of local approximation of n�e
h

in space and time. Global smoothness of �h(x, t) of a desired order is due to the global
smoothness of n�e

h(x, t), the local approximation over n�e
xt of the same order [38–40].
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(c) If the theoretical solution �(x, t) is analytic and is of class CL1,L2(�xt ); 2m1�L1�∞,
2m2�L2�∞, then, 2m1+1�k1�∞, 2m2+1�k2�∞ must hold in (a) and (b) if �∗

h ≡
� ∀x, t ∈ �̄

T
xt in which �∗

h is the limit point of the sequence of limit points obtained from
converging sequences of solutions.

(d) Generally, one limits the global differentiability of �h(x, t) by choosing k1= k̂1 and k2= k̂2
such that 2m1+1�k̂1�L̂1, 2m2+1�k̂2�L̂2. Obviously, choices of L̂1 and L̂2 limit the

achievable global smoothness of �h(x, t). Admissibility of �h in A�− f =0 ∀x, t ∈ �̄
T
xt

and �∗
h →� with global differentiability L̂1�2m1+1 and L̂2�2m2+1 implies that 2m1+

1�k1�L̂1, 2m2+1�k2�L̂2.

The approximation spaces Hk(�̄
T
xt ) and Hk,p(n�̄

e
xt ) for global approximation �h(x, t) and for

local approximation n�e
h(x, t) are scalar product spaces containing global and local approximation

functions of class Ck−1 for �̄
T
xt and

n�̄
e
xt with standard definition of norms. Here, k=(k1,k2), k1

being the order of the approximation space in space x and k2, the order of the space in time t .
p=(p1, p2) in which p1 and p2 are degrees of local approximation in space and time. One can
easily show that p1�2k1−1 and p2�2k2−1.

The orders k1 and k2 in space and time of these scalar product spaces yield global differentiability

(or smoothness) of orders k1−1 and k2−1 in space and time of the approximation �h(x, t) in �̄
T
xt .

And, that order k=(k1,k2) is an independent parameter in all computations for IVP in addition
to h and p and hence k-version of finite element for IVP and the associated k,hk, pk and hpk
processes in addition to h, p and hp processes.

2.2. Governing differential equation

The viscous form of the transient 1-D Burgers equation in the absence of sources and sinks is
given by

��

�t
+�

��

�x
− 1

Re

�2�
�x2

=0 ∀(x, t)∈�xt =�x ×�t =�x ×(0,�) (2)

The boundary conditions (BCs) and initial conditions (ICs) will be discussed in context with
specific numerical studies.

For a finite Re, the theoretical solution �(x, t) of (2) is analytic and hence can be expressed as an
algebraic polynomial of degrees p1 and p2 in space and time in which p1 and p2 may be infinity.
Hence, �(x, t) is class ccp1,p2(�xt ); with p1, p2=∞ is admissible. If �h(x, t) is an approximation

of �(x, t) in �̄
T
xt , then, we have the following (in space–time, time marching process):

n�e
h(x, t)∈Hk,p(n�̄

e
xt ), k=(k1,k2), k1�3 and k2�2

p1�2k1−1 and p2�2k2−1
(3)

In (3) k1=3 and k2=2 correspond to the minimally conforming space in space and time if the
space–time integrals are to be in Riemann sense. when k1=2 and k2=1, the space–time integrals
are in Lebesgue sense. The orders k1>3 and k2>2 are necessitated if �h(x, t) is to possess the
global smoothness up to a desired order which may be desired to incorporate the higher-order
global differentiability features of the theoretical solution in the computations and hence, the need
for h, p,k framework.
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2.3. Space–time LSP in h, p,k framework

We consider STLSP for (2) over a space–time strip n�̄xt =⋃M
e=1

n�̄
e
xt in which n�̄

e
xt is a space–

time element or sub-domain. Let n�e
h(x, t) be an approximation of �(x, t) over n�̄

e
xt and Vh(n�̄

e
xt )

be the approximation space; then,

Vh(
n�̄

e
xt )=Hk,p(n�e

xt ), k=(k1,k2), p=(p1, p2) ∀n�̄e
xt ∈n�̄xt (4)

H (k1,k2),(p1,p2)(n�̄
e
xt ) = {w :w|n�̄e

xt
∈c(k1−1,k2−1),(p1,p2)(n�̄

e
xt ),w|n�̄e

xt
∈ pp1,p2(n�̄

e
xt )

k1�3, k2�2, p1�2k1−1, p2�2k2−1 ∀n�̄e
xt ∈n�̄xt } (5)

n�e
h(x, t)∈Vh(n�̄

e
xt ) can be defined using

n�e
h(x, t) = [N (k1−1,k2−1),(p1,p2)(x, t)]{n�e}

=
n∑

e=1
Ni (x, t)

n�e
i ∀(x, t)∈n�̄

e
h(x, t) (6)

in which {n�e} are nodal degrees of freedom for the space–time element with domain n�̄
e
xt and

N (k1−1,k2−1),(p1,p2)(x, t)∈Vh(n�̄
e
xt ) are the space–time local approximation functions [43]. With

the local approximation n�e
h(x, t) defined by (6), the STLSP can be described as follows. Find

{n�h}=
⋃

e{n�e
h} such that

�I (n�h)=
M∑
e=1

(n Ee,�(n Ec))=g(n�h)=0

where

I (n�h)=
M∑
e=1

(n Ee,n Ee)n�e
xt
, n Ee= �(n�e

h)

�t
+n�e

h
�(n�e

h)

�x
− 1

Re

�2(n�e
h)

�x2

and

�2 I (n�h)≈
M∑
e=1

(�(n Ee),�(n Ee))>0

in which

�(n Ee)= �v

�t
+v

�(n�e
h)

�x
+n�e

h
�v

�x
− 1

Re

�2v
�x2

where

v=�(n�e
h)=N j (x, t), j =1, . . . ,n
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Using Newton’s first-order method with line search to find n�h iteratively to satisfy g(n�h)=0
yields:

n�h =(n�h)0+��n�h

�n�h =−[�2 I (n�h)]−1
(n�h)0

{g(n�h)}(n�h)0

� is determined such that

I (n�h)�I ((n�h)0)

where (n�h)0 is the assumed or starting solution in the Newton’s first-order method.

Remarks

(1) In the STLSP requiring construction of I (n�h) and �I (n�h)=0, the GDE is not linearized
as done by the authors in References [20] and others.

(2) The STLSP is STVC and hence ensures a unique n�h and unconditionally stable and
non-degenerate computational process during time marching and thus the entire evolution.

(3) We note that in the STLSP I (n�h) is minimized by a n�h that satisfies �I (n�h)=0 and that
minima of I (n�h) is zero. Hence, when I (n�h)→0 we have n Ee→0 for e=1, . . . ,M in
the point-wise sense. That is convergence of n Ee in L2-norm yields point-wise convergence
of n Ee ∀(x, t)∈n�̄xt .

(4) STLSP has the best approximation property in the E-norm, i.e. ‖n�h‖E =
(
∑

(n Ee,n Ee)n�e
xt
)1/2 is minimum in STLSP compared with any other process.

3. NUMERICAL STUDIES

In this section we present a number of numerical studies to demonstrate the importance of STVC of
the space–time integral forms and that of the higher-order spaces in simulating numerical solutions
of the transient Burgers equation under various ICs and BCs. The numerical studies are divided
into three sections and the model problems used are the same as those used in the published work
[3], so that our computed results can be compared with those in References [3]. In all of our
computations, viscous form of the Burgers equation is used and hence, the numerical studies are
for specific values of Re numbers (given with the numerical results). We consider the following
three cases for the viscous form of the Burgers equation:

(i) Evolutions and stationary states of a single shock for Re=100,1000 and 10000.
(ii) Evolution and stationary state of a double shock for Re=1000.
(iii) Evolution of a transonic shock at Re=1000

In all numerical studies time-accurate evolution details as well as the details of the stationary states
of the evolutions are presented. For the strong form of the GDE for the Burgers equation, k1=3
and k2=2 correspond to the minimally conforming spaces (ensuring all space–time integral to be
Riemann). Actual values of k1 and k2 as well as p1 and p2 used in the computations are given
with the numerical results.
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3.1. Evolution and stationary states of a single shock

The space–time domain �xt =[0,1]×[0,1] is considered in this study with the following ICs and
BCs:

IC :�(x,0)=0.5, 0�x�1

BC :�(0, t)=
{
0.5, t�0.0

1.0, t>0.0

3.1.1. Mathematical representation of step BC and rationale for comparison between theoretical
and numerical solutions. From the description of the BC we note that at t=0.0 � changes from
0.5 to 1.0 (i.e. step function) shown in Figure 1.

From Figure 1 we clearly observe the non-analytic nature of �(x, t) at t=0.0. Let n�e(x, t)∈
Hk,p(�̄

e
xt ); k=(k1,k2) in which k2 is the order of the approximation in time. If we assume �

changes from 0.5 to 1.0 over an increment of time �t in a continuous and differentiable fashion
based on the interpolants in the approximation spaces Hk,p(�̄

e
xt ), then for progressively increasing

k2 the behavior of �h(0, t) over �t (Figure 2) clearly demonstrates that as k2 increases the
distribution of �h(0, t) becomes steeper and in the limiting case (k2→∞) approaches the step
function at t=�t/2. Another way to visualize this is that distribution shown in Figure 2 for various
values of k2 are in fact the properties of the distributions shown in Figure 1 in the spaces of
progressively higher-order global differentiability in time. From Figure 2 we clearly see that when
k2→∞, �h remains 0.5 for 0�t<�t and only attains a value of 1.0 for t=�t/2 and thereafter
maintains a value of 1.0. Thus, if the theoretical solutions of this model problem were available
for BC shown in Figure 3, then when comparing with numerical solutions, one must observe the

1

time, t

φ

0.5

Figure 1. BC at x=0, i.e. �(0, t).
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k2= ∞

Figure 2. Descriptions of impulsive �(0, t) for 0�t��t in spaces of progressively higher-order global
differentiability in time obtained using interpolants.

0 0.25 0.5 0.75 1

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
1.1
1.2
1.3

x

t

0
0.2

0.4
0.6

0.8
1 0

0.5

1

1.50.5

0.6

0.7

0.8

0.9

1

time, t

Distance, x

φ h

(a)

(b)

Figure 3. Contours and profiles of �h in the x–t domain for a single shock at Re=100: (a) contours of
�h in the x–t domain and (b) profiles of �h in the x–t domain.

following:

�(x, t)‖t=�t/2=�h(x, t)‖t=�t
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and

�(x, t)‖t=�t/2+n�t =�h(x, t)‖t=�t+n�t for n=1,2, . . .

Remarks

(1) As k2→∞ we do achieve impulsive (step change) changes in �h(0, t) but with a time lag
of �t/2 (assuming �h changes for 0.5 to 1.0 over �t). This time lag must be taken into
account when comparing with theoretical solutions.

(2) Impulsive theoretical nature of �(0, t) at t=0 is only realized at high values of k2, i.e. order
of the approximation space in time in the computation at t=�t/2 but not at t=0.

(3) Figure 2 clearly shows the meritorious nature of n�e
h(x, t) in Hk,p(n�̄

e
xt ) spaces in achieving

the desired behavior of �(0, t), at t=0. The descriptions of �(0, t) in Figure 1 becomes
analytic in Hk,p(n�̄

e
xt ) spaces. The representations shown in Figure 2 are using interpolants

in various order spaces.
(4) Due to (3) the theoretical solutions of the numerically posed problem in various order spaces

in time remain analytic. This aspect permits meaningful numerical simulation in which we
can achieve convergence.

(5) In all numerical theoretical studies a step change is simulated over an increment of time �t
with features similar to those shown in Figure 2.
The BC (Figure 2) imposed over �t evolves into a steady propagating front (shock wave).
The speed of the steady front in this case is given by (�(0,0)+�(0,�t))/2 which for
�(0,0) of 0.5 and �(0,�t) of 1.0 is 3

4 .

3.1.2. Evolution and its stationary state for Re=100. Here we consider a single shock at Re=100
over �xt =(0,1)×(0,1.6). The spatial discretization consists of a 50-element uniform mesh over
�̄x =[0,1]. The solution is time marched with �t=0.02. Since the numerically posed problem
(based on Section 3.1.1) has analytic theoretical solution, its numerical solution should pose no
problems. We consider solutions of class C1,1(n�̄

e
xt ), i.e. of class C

1 in space as well as time. In
this case the integrals in space are in Lebesgue sense but in Riemann sense in time. In this choice
the order of the approximation space in x is one order lower than minimally conforming space.
We consider p1= p2=11 (i.e. uniform p-level in space and time). For these choices of h (i.e.
ht =�t,hx =�x), p and k the computed values of g (=�I ) and the least-squares functional I are
O(10−6) and O(10−8) and the Newton method with line search converges in less than 10 iterations.
Such low values of I indicate good accuracy of the computed evolution for each space–time strip.
With shock speed of 1.5, the disturbance reaches x=1 (end of the spatial domain) at t=1.33 but
we continue the evolution till the stationary state is achieved. Figure 3(a) and (b) shows contours
and profiles of �h in x–t space. From Figure 3(a) we observe that due to low Re number (and hence
significant physical diffusion) the contours progressively diffuse for progressively increasing values
of x and t . Near vertical lines at x=1.0 correspond to the stationary state of the evolution. Smooth
and oscillation-free profiles of �h in Figure 3(b) can be clearly observed. By examining L2-norms
of ��h/�x and ��h/�t as a function of time for each space–time strip during evolution, a clear
assessment of the accuracy of the stationary state of the evolution can be made. Figure 4(a) and
(b) plots L2-norms of ��h/�x and ��h/�t as a function of time. At or near t=1.6, ‖��h/�x ‖L2

ceases to change and ‖��h/�t ‖L2 becomes zero, confirming that the evolution has reached the
stationary state.
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Figure 4. L2-norms of the ��h/�x and ��h/�t versus time for a single shock at Re=100 using space–time
strip with time marching: (a) L2-norm of ��h/�x versus time and (b) L2-norm of ��h/�t versus time.

3.1.3. Evolution and its stationary state for Re=1000. At Re=1000 the shock width is obviously
much smaller compared with Re=100. This of course requires a different discretization. Choice of
�t and k2 depends on how closely we want to approximate non-analytic nature of �(0, t) at t=0.
These choices influence initial stages of evolution significantly; however, �h(x, t) during the later
stages of evolution is not effected due to the self-correcting nature of the evolution inherent due
to non-linear GDE. In this study also we consider solutions of class C1,1(n�̄

e
xt ) with k1=k2=2,

hx =�x=0.01, p1= p2=11 and ht =�t=0.01. Accuracy of g and I similar to those for Re=100
(Section 3.1.2) is achieved in this case also and Newton’s method with line search also has similar
performance. Figure 5(a) and (b) shows contours and profiles of �h in x–t space. From Figure 5(a)
we observe that due to higher value of Re number (and hence diminished physical diffusion), the
contours do not diffuse significantly for progressively increasing values of x and t . Here also,
near vertical lines at x=1.0 indicate that the evolution has reached stationary state. Smooth and
oscillation-free profiles �h with higher solution gradients (compared with Re=100) can be clearly
observed in Figure 5(b). Stationary value of ‖��h/�x ‖L2 and near-zero value of ‖��h/�t ‖L2 for
t>1.4 in the graphs shown in Figure 6(a) and (b) confirm accurate stationary state of the evolution
for t>1.4.

3.1.4. Evolution and its stationary state for Re=10000. At this Re number the shock width is
even smaller than that for Re=1000 (Section 3.1.3). In this study we choose hx =�x=0.00125
and ht =�t=0.001, k1=k2=2 (i.e. solutions of class C1,1(n�̄

e
xt )) and p1= p2=9. The evolution

is obtained by time marching the solution. Accuracy of g and I similar to those in Section 3.1.2 is
achieved here as well and Newton’s method with line search also performs similarly. Figure 7(a)
and (b) shows plots of the contours of �h and profiles of �h in the x–t domain. From Figure 7(a)
we clearly note the consequence of significantly reduced physical diffusion at this Re number,
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Figure 5. Contours and profiles of �h in the x–t domain for a single shock at Re=1000: (a) contours of
�h in the x–t domain and (b) profiles of �h in the x–t domain.

0

(a) (b)

0.5 1 1.5 2 2.5 3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

time, t

||d
φ h

/d
x|

| L
2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

time, t

||d
φ h

/d
t||

L2

Figure 6. L2-norms of the ��h/�x and ��h/�t versus time for a single shock at Re=1000 using space–time
strip with time marching: (a) L2-norm of ��h/�x versus time and (b) L2-norm of ��h/�t versus time.

resulting in much narrower width of the contours in the x–t domain. This is obviously due to
much isolated and higher solution gradients that are quite clear in Figure 7(b). Profiles of �h in
Figure 7(b) are smooth and oscillation free. Behaviors of the L2-norms of ��h/�x and ��h/�t
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Figure 7. Contours and profiles of �h in the x–t domain for a single shock at Re=10000: (a) contours
of �h in the x–t domain and (b) profiles of �h in the x–t domain.

versus time similar to those presented in Sections 3.1.2 and 3.1.3 are also observed here (not
shown for sake of brevity), confirming the accuracy of the stationary state of the evolution.

3.2. Evolution and stationary state of a double shock at Re=1000.

In this section we consider evolution and stationary state of a double shock over �xt =(0,2)×
(0,1.6) for Re=1000 and we consider the following IC and BC:

IC :�(x,0)=
{
1.5, 0�x<0.5

0.5, 0.5�x�2

BC :�(0, t)=
{
1.5, t<0

2.5, t�0

Figure 8(a) and (b) shows graphs of IC and BC.
We note that IC at t=0 is non-analytic due to step change in � at x=0.5 and the BCs at

x=0.0 is also non-analytic due to step change in �. In the numerical solutions such behaviors in
Hk,p(n�̄

e
xt ) spaces are represented using interpolants (similar to Figure 2). These representations

of Figure 8(a) and (b) are analytic (similar to Figure 2) and as we increase k1 and k2, the
representations in the respective spaces approach the desired behaviors but always remain analytic
and hence the theoretical solutions of the numerically posed double-shock IVP always remains
analytic as well. This significant feature permits us to lower the order of approximation spaces
below minimally conforming due to the fact that convergence of the lower class solutions to
higher class is possible. In this study we consider solutions of class C1,1(n�̄

e
xt ) and C2,1(n�̄

e
xt )
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Figure 8. IC and BC for double shock at Re=1000.

to demonstrate the importance of higher order global differentiability in space x . The BC and
IC shown in Figure 8 create two disturbances, both of which propagate from left to right but at
different speeds and evolve into two shocks. Since the shock due to BC (Figure 8(a)) is traveling
at a faster speed than the one due to IC (Figure 8(b)), the two shocks interact and form a single
shock that eventually reaches the end of the domain and evolves into stationary state.

In the numerical study presented here we choose hx =�x=0.01, p1= p2=11 and ht =�t=
0.005 at Re=1000. First, we consider solution of class C1,1(n�̄

e
xt ). Figure 9(a) and (b) shows

contours and profiles of �h in the x–t domain. From Figure 9(a) shock formations, interaction and
subsequent propagation of the resulting shock are clearly observed. Profiles of �h in Figure 9(b)
remain smooth, oscillation free and clearly show high solution gradients and their accurate reso-
lution. The solution of class C2,1(n�̄

e
xt ) were also computed using the same discretization and

p-levels as used for solutions of class C1,1(n�̄
e
xt ). Figure 10(a) and (b) shows plots of L2-norms

of ��h/�x and ��h/�t versus time t for solutions of classes C1,1 and C2,1 obtained by using
space–time time marching processes. We make the following remarks:

(a) In general, solutions of both classes show good agreement.
(b) In case of solutions of class C1,1 ‖��h/�t ‖L2 becomes constant when evolution ceases

but has a finite non-zero value. For local approximation of class C2,1, ‖��h/�t ‖L2 is very
close to zero, indicating better accuracy of the stationary state achieved when the local
approximations are of class C2,1.

(c) Different values of ‖��h/�x ‖L2 for the two classes of solution for t>1.2 are clearly seen
as well.

(d) Exploded views in Figure 1(a) and (b) show oscillatory behaviors of both L2-norms when
the local approximations are of class C1,1 but free of oscillations for the solution of class
C2,1.
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Figure 9. Contours and profiles of �h in the x–t domain for a double shock at Re=1000: (a) contours
of �h in the x–t domain and (b) profiles of �h in the x–t domain.
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(e) Solutions of class C2,1(n�̄
e
xy) correspond to k1=3 and k2=2, which is the minimally

conforming space for the model problem. Superiority of the solutions of classes C2,1 over
those of C1,1 is clearly observed.
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3.3. Evolution of transonic shock at Re=1000

In this section we consider a transonic shock problem described by the following ICs and BCs:

IC :u(x,0)=
⎧⎨
⎩

−0.5, −1�x<0

2.5, 0<x�1.5

BC :u(0, t)=−0.5 ∀t ∈[0,�]

In this case we note that BC data do not have discontinuity but the IC data shown in Figure 11(a)
are non-analytic. As in the previous model problems, here also we regularize IC using interpolants
over hx =�x . The domain of definitions �xt =(−1,1.5)×(0,3.0) is discretized using hx =�x=
0.0125 and ht =�t=0.005. We consider local approximations of class C1,1(n�̄

e
xy) corresponding

to k1=k2=2 and we choose p1= p2=9. The evolution is time marched using space–time strip.
The values of g and I (n�h) remain O(10−6) and O(10−8 during the entire evolution, indicating
convergence of Newton’s method with line search and good accuracy of the evolution. Figure 12(a)
and (b) shows contours and profiles of �h in the x–t domain. Evolutions are oscillation free and
smooth. Evolution of rarefaction is simulated quite well as time elapses. Profiles of �h shown in
Figure 12(b) indicate that gradients of �h are preserved and solutions are oscillation free as well.
Owing to rarefaction (i.e. diffusion) the stationary state of the evolution will require a much larger
value of time. This is quite obvious from the graphs of L2-norms of ��h/�x and ��h/�t versus
time t shown in Figure 13. Even at t=3.0, L2-norm of the ��h/�x has not reached a steady
value and L2-norm of the ��h/�t continues to decrease but has not reached zero (numerically
computed) value.

(a) (b)
0 1.5

2.5

X

φ(
x,

0)

t

φ(
0,

t)

Figure 11. IC and BC for transonic shock at Re=1000.
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Figure 12. Contours and profiles of �h in the x–t domain for a transonic shock at Re=1000: (a) contours
of �h in the x–t domain and (b) profiles of �h in the x–t domain.
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Figure 13. L2-norms of the ��h/�x and ��h/�t for transonic shock problem at Re=1000: (a) L2-norm
of ��h/�x versus time and (b) L2-norm of ��h/�t versus time.

3.4. Evolutions for progressively increasing CFL numbers: unconditional non-degeneracy and
stability of STLSP

Numerical studies are presented in this section to demonstrate: (i) The STLSP are unconditionally
non-degenerate, i.e. computations are possible for any choices of h, p and k; (ii) to show that even
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Figure 14. L2-norms of the ��h/�x and ��h/�t for meshes of 200, 400, 800 elements in space with
ht =�t=0.01 and Re=1000: (a) L2-norm of ��h/�x versus time and (b) L2-norm of ��h/�t versus time.

though the CFL number does influence accuracy the STLSP are unconditionally stable; (iii) good
accuracy of evolution is achievable for very high CFL numbers. We consider the model problem
with a single shock at Re=1000 (Section 3.1.3). Numerical studies were conducted using space–
time strip with time marching for 200,400 and 800 element uniform discretizations in spatial
domain using ht =�t=0.01, which correspond to CFL numbers of 2,4 and 8. k1=k2=2 and
p1= p2=9 were chosen. For these values of the computational parameters, g and I (n�h) were
O(10−10) and O(10−7) for all space–time strips for three values of the CFL numbers. Figure 14(a)
and (b) shows that L2-norms of ��h/�x and ��h/�t versus time are indistinguishable from each
other for all three values of CFL numbers.

4. SUMMARY AND CONCLUSIONS

The mathematical and computation aspects as well as numerical studies in hpk framework are
presented for time-dependent partial differential equation resulting from a single non-linear conser-
vation law. Viscous form of the Burgers equation is used as a specific model problem. A summary
of the work and the conclusions are given in the following.

(1) The viscous form of the Burgers equation containing highest-order derivatives of the depen-
dent variable (as opposed to a system of first-order equations) is used in the space–time
least-squares finite element formulation as well as the numerical studies.

(2) GDE is not linearized prior to constructing the least-squares functional as done in Refer-
ence [3] and other published works. The merits of this approach are: (a) the least-squares
functional and its first variation correspond to the precise non-linear mathematical model.
(b) In this simple model problem, the linearization of GDE may be obvious but in the case
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of more complex physics (such as Navier–Stokes equations) this may not be the case. (c)
Newton’s method with line search is only employed while solving the non-linear algebraic
equations resulting from the first variation of least-squares functional set to zero. (d) This
approach is free of assumptions, approximations and is applicable to all non-linear partial
differential equations.

(3) The space–time local approximations are in higher-order approximation spaces which permit
higher-order global differentiability of the approximations in space as well as time. The
order k of the approximation space is an independent parameter in addition to h and p.
Use of higher-order spaces permit use of GDE containing the higher-order derivatives
of the dependent variables in the integral forms as well as allow us to incorporate the
desired global differentiability features of the theoretical solutions in the design of the
computational process.

(4) For the model considered here the space–time strip with time marching is utilized as
opposed to space–time meshes [3]. This is computationally efficient and permits control
of approximation errors due to the fact that the evolution is not time marched until the
converged solution is obtained for the current space–time strip.

(5) In case of a single shock (Section 3.1), numerical studies for progressively increasing
Re numbers demonstrate: (a) smooth evolutions; (b) accurate stationary state; and (c)
progressively reduced shock width for progressively increasing Re number. As Re→∞,
the singular solutions of the inviscid form of the Burgers equation are approached. Similar
features exist for the double shock also (Section 3.2), even though the numerical study in
the paper is only for Re=1000. Simulation of transonic shock at Re=1000 (Section 3.3)
presents no difficulties. Evolution is smooth and oscillation free. Significantly low values
of least-squares functional I =O(10−8) or lower ones for all space–time strips indicate that
GDE is satisfied accurately in the point-wise sense during the entire evolution and hence all
evolutions presented here are very close to being time accurate. Space–time least-squares
functional converges monotonically and remains bounded for all choices of hpk.

(6) It is worth reiterating that solutions of inviscid Burgers equation are singular, hence non-
analytic and thus non-unique [1]. As pointed out in Reference [1], the theory of generalized
solutions leads to non-uniqueness when applied to the inviscid Burgers equation and the only
means of restoring uniqueness is to incorporate viscous mechanism. Thus, all approaches
and methodologies dealing with numerical solutions of inviscid Burgers equation are based
on addition of artificial diffusion to the inviscid form and then demonstrating its vanishing
nature in some limiting process. Secondly, the viscous mechanism in these approaches
may not be in precise agreement with the physics of diffusion present in the viscous
form of Burgers equation. Thus, the numerical solutions obtained from artificial viscosity
approach may or may not correspond to that of the viscous form with a specific value
of Re. This obviously raises the question of time accuracy of the evolutions in artificial
diffusion approaches.

(7) In the approach presented here using viscous form of the Burgers equation, the time-accurate
evolutions and their stationary state can be and has been established precisely for specific
Re numbers and as Re→∞ the vanishing nature of the shock width is quite clear from
the numerical studies presented here. In this approach the solution remains analytic, asso-
ciated functionals exhibit monotonic convergence and the computational processes remain
unconditionally stable and non-degenerate. The STLSP for Burgers equation is constructed
in a straightforward manner without linearization, any assumption or approximations.
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Up-winding methods or any other ad hoc treatments are neither needed nor used in the
work presented here.
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